Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Pervasive algebras and maximal subalgebras

Tom 206 / 2011

Pamela Gorkin, Anthony G. O'Farrell Studia Mathematica 206 (2011), 1-24 MSC: Primary 46J10. DOI: 10.4064/sm206-1-1

Streszczenie

A uniform algebra on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X). It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain of pervasive subalgebras on X. (2) It is possible to find a compact Hausdorff space X such that there is an isomorphic copy of the lattice of all subsets of \def\N{\mathbb N}\N in the family of pervasive subalgebras of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive, then it is maximal. (4) This fails if the word “strongly” is removed.

We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras, and subalgebras of H^\infty(\mathbb{D}), and develop new results that relate pervasiveness, maximality, and relative maximality to support sets of representing measures.

Autorzy

  • Pamela GorkinDepartment of Mathematics
    Bucknell University
    Lewisburg, PA 17837, U.S.A.
    e-mail
  • Anthony G. O'FarrellDepartment of Mathematics
    National University of Ireland, Maynooth
    Maynooth, Co. Kildare, Ireland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek