Commutators on $(\sum \ell_q)_p$
Tom 206 / 2011
                    
                    
                        Studia Mathematica 206 (2011), 175-190                    
                                        
                        MSC: Primary 47B47; Secondary 46B20.                    
                                        
                        DOI: 10.4064/sm206-2-5                    
                                    
                                                Streszczenie
Let $T$ be a bounded linear operator on $X=(\sum \ell_{q})_{{p}}$ with $1\le q < \infty$ and $1< p< \infty$. Then $T$ is a commutator if and only if for all non-zero $\lambda\in \mathbb{C}$, the operator $T-\lambda I$ is not $X$-strictly singular.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            