JEDNOSTKA NAUKOWA KATEGORII A+

Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains

Tom 207 / 2011

Petru A. Cioica, Stephan Dahlke, Stefan Kinzel, Felix Lindner, Thorsten Raasch, Klaus Ritter, René L. Schilling Studia Mathematica 207 (2011), 197-234 MSC: Primary 60H15; Secondary 46E35, 65C30. DOI: 10.4064/sm207-3-1

Streszczenie

We use the scale of Besov spaces $B^\alpha_{\tau,\tau}(\mathcal{O})$, $1/\tau=\alpha/d+1/p$, $\alpha>0$, $p$ fixed, to study the spatial regularity of solutions of linear parabolic stochastic partial differential equations on bounded Lipschitz domains $\mathcal{O}\subset\mathbb{R}$. The Besov smoothness determines the order of convergence that can be achieved by nonlinear approximation schemes. The proofs are based on a combination of weighted Sobolev estimates and characterizations of Besov spaces by wavelet expansions.

Autorzy

  • Petru A. CioicaAG Numerik/Optimierung
    FB Mathematik und Informatik
    Philipps-Universität Marburg
    Hans-Meerwein-Straße
    35032 Marburg, Germany
    e-mail
  • Stephan DahlkeAG Numerik/Optimierung
    FB Mathematik und Informatik
    Philipps-Universität Marburg
    Hans-Meerwein-Straße
    35032 Marburg, Germany
    e-mail
  • Stefan KinzelAG Numerik/Optimierung
    FB Mathematik und Informatik
    Philipps-Universität Marburg
    Hans-Meerwein-Straße
    35032 Marburg, Germany
    e-mail
  • Felix LindnerInstitut für Mathematische Stochastik
    FB Mathematik
    TU Dresden
    Zellescher Weg 12-14
    01069 Dresden, Germany
    e-mail
  • Thorsten RaaschAG Numerische Mathematik
    Institut für Mathematik
    Johannes-Gutenberg-Universität Mainz
    Staudingerweg 9
    55099 Mainz, Germany
    e-mail
  • Klaus RitterComputational Stochastics Group
    Department of Mathematics
    TU Kaiserslautern
    Erwin-Schrödinger-Straße
    67663 Kaiserslautern, Germany
    e-mail
  • René L. SchillingInstitut für Mathematische Stochastik
    FB Mathematik
    TU Dresden
    Zellescher Weg 12-14
    01069 Dresden, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek