JEDNOSTKA NAUKOWA KATEGORII A+

A general duality theorem for the Monge–Kantorovich transport problem

Tom 209 / 2012

Mathias Beiglböck, Christian Léonard, Walter Schachermayer Studia Mathematica 209 (2012), 151-167 MSC: Primary 49Q20. DOI: 10.4064/sm209-2-4

Streszczenie

The duality theory for the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces $X, Y$ are assumed to be Polish and equipped with Borel probability measures $\mu $ and $\nu $. The transport cost function $c:X\times Y \to [0,\infty ]$ is assumed to be Borel. Our main result states that in this setting there is no duality gap provided the optimal transport problem is formulated in a suitably relaxed way. The relaxed transport problem is defined as the limiting cost of the partial transport of masses $1-\varepsilon $ from $(X,\mu )$ to $(Y, \nu )$ as $\varepsilon >0$ tends to zero.

The classical duality theorems of H. Kellerer, where $c$ is lower semicontinuous or uniformly bounded, quickly follow from these general results.

Autorzy

  • Mathias BeiglböckFaculty of Mathematics
    University of Vienna
    Nordbergstrasse 15
    1090 Wien, Austria
    e-mail
  • Christian LéonardModal-X, Université Paris Ouest
    Bât. G, 200 av. de la République
    92001 Nanterre, France
    e-mail
  • Walter SchachermayerFaculty of Mathematics
    University of Vienna
    Nordbergstrasse 15
    1090 Wien, Austria
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek