JEDNOSTKA NAUKOWA KATEGORII A+

Generalized-lush spaces and the Mazur–Ulam property

Tom 219 / 2013

Dongni Tan, Xujian Huang, Rui Liu Studia Mathematica 219 (2013), 139-153 MSC: Primary 46B04; Secondary 46B20, 46A22. DOI: 10.4064/sm219-2-4

Streszczenie

We introduce a new class of Banach spaces, called generalized-lush spaces (GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (in particular, separable $C$-rich subspaces of $C(K)$), and even the two-dimensional space with hexagonal norm. We find that the space $C(K,E)$ of vector-valued continuous functions is a GL-space whenever $E$ is, and show that the set of GL-spaces is stable under $c_0$-, $l_1$- and $l_\infty $-sums. As an application, we prove that the Mazur–Ulam property holds for a larger class of Banach spaces, called local-GL-spaces, including all lush spaces and GL-spaces. Furthermore, we generalize the stability properties of GL-spaces to local-GL-spaces. From this, we can obtain many examples of Banach spaces having the Mazur–Ulam property.

Autorzy

  • Dongni TanDepartment of Mathematics
    Tianjin University of Technology
    300384 Tianjin, China
    e-mail
  • Xujian HuangDepartment of Mathematics
    Tianjin University of Technology
    300384 Tianjin, China
    e-mail
  • Rui LiuDepartment of Mathematics and LPMC
    Nankai University
    300071 Tianjin, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek