JEDNOSTKA NAUKOWA KATEGORII A+

Factorization and extension of positive homogeneous polynomials

Tom 221 / 2014

Andreas Defant, Mieczysław Mastyło Studia Mathematica 221 (2014), 87-99 MSC: Primary 47H60. DOI: 10.4064/sm221-1-5

Streszczenie

We study the following problem: Given a homogeneous polynomial from a sublattice of a Banach lattice to a Banach lattice, under which additional hypotheses does this polynomial factorize through $L_p$-spaces involving multiplication operators? We prove that under some lattice convexity and concavity hypotheses, for polynomials certain vector-valued norm inequalities and weighted norm inequalities are equivalent. We combine these results and prove a factorization theorem for positive homogeneous polynomials which is a variant of a celebrated factorization theorem for linear operators due to Maurey and Rosenthal. Our main application is a Hahn–Banach extension theorem for positive homogeneous polynomials between Banach lattices.

Autorzy

  • Andreas DefantInstitut für Mathematik
    Carl von Ossietzky Universität
    Postfach 2503
    D-26111 Oldenburg, Germany
    e-mail
  • Mieczysław MastyłoFaculty of Mathematics and Computer Science
    A. Mickiewicz University
    and
    Institute of Mathematics
    Polish Academy of Sciences (Poznań branch)
    Umultowska 87
    61-614 Poznań, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek