JEDNOSTKA NAUKOWA KATEGORII A+

Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$

Tom 221 / 2014

Stanislav Hencl, Luděk Kleprlík, Jan Malý Studia Mathematica 221 (2014), 197-208 MSC: Primary 30C65; Secondary 46E35, 46E30. DOI: 10.4064/sm221-3-1

Streszczenie

Let $\Omega,\Omega'\subset\mathbb R^n$ be domains and let $f\colon\Omega\to\Omega'$ be a homeomorphism. We show that if the composition operator $T_f\colon u\mapsto u\circ f$ maps the Sobolev–Lorentz space $WL^{n,q}(\Omega')$ to $WL^{n,q}(\Omega)$ for some $q\neq n$ then $f$ must be a locally bilipschitz mapping.

Autorzy

  • Stanislav HenclDepartment of Mathematical Analysis
    Charles University
    Sokolovská 83
    186 00 Praha, Czech Republic
    e-mail
  • Luděk KleprlíkDepartment of Mathematical Analysis
    Charles University
    Sokolovská 83
    186 00 Praha, Czech Republic
    e-mail
  • Jan MalýDepartment of Mathematical Analysis
    Charles University
    Sokolovská 83
    186 00 Praha, Czech Republic
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek