JEDNOSTKA NAUKOWA KATEGORII A+

${\rm A}_{1}$-regularity and boundedness of Calderón–Zygmund operators

Tom 221 / 2014

Dmitry V. Rutsky Studia Mathematica 221 (2014), 231-247 MSC: Primary 46B42, 42B25, 42B20, 46E30, 47B38. DOI: 10.4064/sm221-3-3

Streszczenie

The Coifman–Fefferman inequality implies quite easily that a Calderón–Zygmund operator $T$ acts boundedly in a Banach lattice $X$ on $\mathbb R^n$ if the Hardy–Littlewood maximal operator $M$ is bounded in both $X$ and $X'$. We establish a converse result under the assumption that $X$ has the Fatou property and $X$ is $p$-convex and $q$-concave with some $1 < p, q < \infty $: if a linear operator $T$ is bounded in $X$ and $T$ is nondegenerate in a certain sense (for example, if $T$ is a Riesz transform) then $M$ is bounded in both $X$ and $X'$.

Autorzy

  • Dmitry V. RutskySteklov Mathematical Institute
    St. Petersburg Branch
    Fontanka 27
    191023 St. Petersburg, Russia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek