JEDNOSTKA NAUKOWA KATEGORII A+

Rough oscillatory singular integrals on $\mathbb {R}^{n}$

Tom 221 / 2014

Hussain Mohammad Al-Qassem, Leslie Cheng, Yibiao Pan Studia Mathematica 221 (2014), 249-267 MSC: Primary 42B20; Secondary 26D05. DOI: 10.4064/sm221-3-4

Streszczenie

We establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase $P$. The kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than $\log\deg(P) $, which is optimal and was first obtained by Papadimitrakis and Parissis (2010) for kernels without any radial roughness. Among key ingredients of our methods are an $L^1 \to L^2$ estimate and extrapolation.

Autorzy

  • Hussain Mohammad Al-QassemDepartment of Mathematics and Physics
    Qatar University
    Doha, Qatar
    e-mail
  • Leslie ChengDepartment of Mathematics
    Bryn Mawr College
    Bryn Mawr, PA 19010, U.S.A.
    e-mail
  • Yibiao PanDepartment of Mathematics
    University of Pittsburgh
    Pittsburgh, PA 15260, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek