Finite generation in $C^\ast $-algebras and Hilbert $C^\ast $-modules
Tom 224 / 2014
Studia Mathematica 224 (2014), 143-151
MSC: Primary 46L05, 46L08, 46H25; Secondary 46H10, 16D60, 16D25.
DOI: 10.4064/sm224-2-3
Streszczenie
We characterize $C^*$-algebras and $C^*$-modules such that every maximal right ideal (resp. right submodule) is algebraically finitely generated. In particular, $C^*$-algebras satisfy the Dales–Żelazko conjecture.