JEDNOSTKA NAUKOWA KATEGORII A+

An alternative polynomial Daugavet property

Tom 224 / 2014

Elisa R. Santos Studia Mathematica 224 (2014), 265-276 MSC: Primary 46G25; Secondary 46B20, 46E40. DOI: 10.4064/sm224-3-4

Streszczenie

We introduce a weaker version of the polynomial Daugavet property: a Banach space $X$ has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial $P: X \rightarrow X$ satisfies $$ \max_{\omega \in \mathbb T} \|{\rm Id} + \omega P\| = 1+\|P\|. $$ We study the stability of the APDP by $c_0$-, $\ell_\infty$- and $\ell_1$-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely $L_\infty(\mu, X)$ and $C(K, X)$, where $X$ has the APDP.

Autorzy

  • Elisa R. SantosFaculdade de Matemática
    Universidade Federal de Uberlândia
    Av. João Naves de Ávila 2121
    Uberlândia, MG, 38408-100, Brazil
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek