Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces
F. Albiac, J. L. Ansorena, G. Garrigós, E. Hernández, M. Raja
Studia Mathematica 227 (2015), 133-140
MSC: Primary 41A65; Secondary 41A46, 46B15.
DOI: 10.4064/sm227-2-3
Streszczenie
We show that in a super-reflexive Banach space, the conditionality
constants of a quasi-greedy basis \mathscr B grow at most like
O((\log N)^{1-\varepsilon}) for some 0 < \varepsilon < 1. This extends results by the
third-named author and Wojtaszczyk (2014), where this property
was shown for quasi-greedy bases in L_p for 1< p< \infty. We also
give an example of a quasi-greedy basis \mathscr B in a reflexive Banach
space with k_N(\mathscr B)\approx \log N.
Autorzy
- F. AlbiacDepartamento de Matemáticas
Universidad Pública de Navarra
31006 Pamplona, Spain
e-mail
- J. L. AnsorenaDepartmento de Matemáticas y Computaci\xF3n
Universidad de La Rioja
26004 Logrońo, Spain
e-mail
- G. GarrigósDepartamento de Matemáticas
Universidad de Murcia
30100 Murcia, Spain
e-mail
- E. HernándezDepartamento de Matemáticas
Universidad Autónoma de Madrid
28049 Madrid, Spain
e-mail
- M. RajaDepartamento de Matemáticas
Universidad de Murcia
30100 Murcia, Spain
e-mail