Asymptotically conformal classes and non-Strebel points
Tom 233 / 2016
Studia Mathematica 233 (2016), 13-24
MSC: Primary 30C75; Secondary 30C62.
DOI: 10.4064/sm8329-4-2016
Opublikowany online: 5 May 2016
Streszczenie
Let be the universal Teichmüller space on the unit disk \varDelta and T_0(\varDelta ) be the set of asymptotically conformal classes in T(\varDelta ). Suppose that \mu is a Beltrami differential on \varDelta with [\mu ]\in T_0(\varDelta ). It is an interesting question whether [t\mu ] belongs to T_0(\varDelta ) for general t\not =0, 1. In this paper, it is shown that there exists a Beltrami differential \mu \in [0] such that [t\mu ] is a non-trivial non-Strebel point for any t\in (-{1/{\| \mu \| }_\infty },{1/{\| \mu \| }_\infty })\setminus \{0,1\} .