Young’s (in)equality for compact operators
Tom 233 / 2016
Studia Mathematica 233 (2016), 169-181
MSC: Primary 15A45, 47A30; Secondary 15A42, 47A63.
DOI: 10.4064/sm8427-5-2016
Opublikowany online: 19 May 2016
Streszczenie
If are n\times n matrices, T. Ando proved that Young’s inequality is valid for their singular values: if p \gt 1 and 1/p+1/q=1, then \lambda_k(|ab^*|)\le \lambda_k\biggl( \frac1p |a|^p+\frac 1q |b|^q \biggr) \quad\ \text{for all } k. Later, this result was extended to the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. R. Farenick and R. Zeng. In this paper we prove that if a,b are compact operators, then equality holds in Young’s inequality if and only if |a|^p=|b|^q.