JEDNOSTKA NAUKOWA KATEGORII A+

Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary

Tom 235 / 2016

Vladimir Gol’dshtein, Alexander Ukhlov Studia Mathematica 235 (2016), 209-224 MSC: Primary 46E35; Secondary 30C65. DOI: 10.4064/sm8485-8-2016 Opublikowany online: 4 November 2016

Streszczenie

We prove that any weakly differentiable function with a square integrable gradient can be extended to the Carathéodory boundary of any simply connected planar domain $\varOmega \not =\mathbb R^2$ up to a set of conformal capacity zero. This result is based on the notion of capacitary boundary associated with the Dirichlet space $L^1_2(\varOmega )$.

Autorzy

  • Vladimir Gol’dshteinDepartment of Mathematics
    Ben-Gurion University of the Negev
    P.O. Box 653, Beer Sheva, 8410501, Israel
    e-mail
  • Alexander UkhlovDepartment of Mathematics
    Ben-Gurion University of the Negev
    P.O. Box 653, Beer Sheva, 8410501, Israel
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek