JEDNOSTKA NAUKOWA KATEGORII A+

On (conditional) positive semidefiniteness in a matrix-valued context

Tom 236 / 2017

Fritz Gesztesy, Michael Pang Studia Mathematica 236 (2017), 143-192 MSC: Primary 42A82, 42B15, 43A35; Secondary 43A15, 46E40, 46G10. DOI: 10.4064/sm8531-7-2016 Opublikowany online: 2 December 2016

Streszczenie

In a nutshell, we intend to extend Schoenberg’s classical theorem connecting conditionally positive semidefinite functions $F : \mathbb{R}^n \to \mathbb{C}$, $n \in \mathbb{N}$, and their positive semidefinite exponentials $\exp(tF)$, $t \gt 0$, to the case of matrix-valued functions $F \colon \mathbb{R}^n \to \mathbb{C}^{m \times m}$, $m \in \mathbb{N}$. Moreover, we study the closely associated property that $\exp(t F(- i \nabla))$, $t \gt 0$, is positivity preserving and its failure to extend directly in the matrix-valued context.

Autorzy

  • Fritz GesztesyDepartment of Mathematics
    University of Missouri
    Columbia, MO 65211, U.S.A.
    and
    Department of Mathematics
    Baylor University
    One Bear Place #97328
    Waco, TX 76798-7328, U.S.A.
    e-mail
  • Michael PangDepartment of Mathematics
    University of Missouri
    Columbia, MO 65211, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek