JEDNOSTKA NAUKOWA KATEGORII A+

Fourier algebras of hypergroups and central algebras on compact (quantum) groups

Tom 239 / 2017

Mahmood Alaghmandan, Jason Crann Studia Mathematica 239 (2017), 225-247 MSC: Primary 43A62; Secondary 43A20. DOI: 10.4064/sm8643-3-2017 Opublikowany online: 8 May 2017

Streszczenie

This paper concerns the study of regular Fourier hypergroups through multipliers of their associated Fourier algebras. We establish hypergroup analogues of well-known characterizations of group amenability, introduce a notion of weak amenability for hypergroups, and show that every discrete commutative hypergroup is weakly amenable with constant 1. Using similar techniques, we provide a sufficient condition for amenability of hypergroup Fourier algebras, which, as an immediate application, answers one direction of a conjecture of Azimifard–Samei–Spronk (2009) on the amenability of $ZL^1(G)$ for compact groups $G$. In the final section we consider Fourier algebras of hypergroups arising from compact quantum groups $\mathbb {G}$, and in particular establish a completely isometric isomorphism with the center of the quantum group algebra for compact $\mathbb {G}$ of Kac type.

Autorzy

  • Mahmood Alaghmandan
  • Jason Crann

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek