JEDNOSTKA NAUKOWA KATEGORII A+

Leinert sets and complemented ideals in Fourier algebras

Tom 239 / 2017

Michael Brannan, Brian Forrest, Cameron Zwarich Studia Mathematica 239 (2017), 273-296 MSC: Primary 43A15, 43A22; Secondary 46H10. DOI: 10.4064/sm8733-3-2017 Opublikowany online: 26 March 2017

Streszczenie

We show how complemented ideals in the Fourier algebra $A(G)$ of $G$ arise naturally from a class of thin sets known as Leinert sets. Moreover, we present an explicit example of a closed ideal in $A(\mathbb {F}_{N})$, where $\mathbb {F}_{N}$ is the free group on $N \ge 2$ generators, that is complemented in $A(\mathbb {F}_{N})$ but it is not completely complemented. Then by establishing an appropriate extension result for restriction algebras arising from Leinert sets, we show that any almost connected group $G$ for which every complemented ideal in $A(G)$ is also completely complemented must be amenable.

Autorzy

  • Michael Brannan
  • Brian Forrest
  • Cameron Zwarich

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek