JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Invariant Banach limits and their extreme points

Tom 242 / 2018

Egor Alekhno, Evgenii Semenov, Fedor Sukochev, Alexandr Usachev Studia Mathematica 242 (2018), 79-107 MSC: Primary 46B45; Secondary 47B37. DOI: 10.4064/sm8785-5-2017 Opublikowany online: 9 November 2017

Streszczenie

The set $\mathfrak B $ of all Banach limits is the set of all positive, normalised and shift-invariant functionals on the space $\ell _\infty $ of all bounded sequences. Motivated by W. Eberlein’s work we introduce and study the class of operators $W$ (we call them (strongly) $\mathfrak {B}$-regular) which have at least one $W$-invariant Banach limit. This class includes such well-known operators on $\ell _\infty $ as (generalised) Cesàro and dilation operators. We study the geometric properties of the set of all $W$-invariant Banach limits, and show that the extreme points of this set are multiplicative on the set ${\rm St}(W)$. This is an extension of the statement about the stabiliser for the shift operator introduced by W. Luxemburg. We show that the cardinality of the set of extreme points of the set of Cesàro invariant Banach limits coincides with that of the set of all bounded linear functionals on $\ell _\infty $ and equals $2^\mathfrak {c}$.

Autorzy

  • Egor AlekhnoFaculty of Mechanics and Mathematics
    Belarus State University
    pr. Nezavisimosti 4
    Minsk, 220030, Belarus
  • Evgenii SemenovFaculty of Mathematics
    Voronezh State University
    Universitetskaya pl. 1
    Voronezh, 394006, Russia
    e-mail
  • Fedor SukochevSchool of Mathematics and Statistics
    University of New South Wales
    Kensington, NSW 2052, Australia
    e-mail
  • Alexandr UsachevSchool of Mathematics and Statistics
    University of New South Wales
    Kensington, NSW 2052, Australia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek