On Banach spaces of continuous functions on finite products of separable compact lines
Tom 251 / 2020
Streszczenie
We study properties of the Banach spaces $C(L,X)$ of all continuous functions from a finite product $L$ of compact lines into a Banach space $X$. We show that if $L_1,\dots , L_k$, $K_1,\dots ,K_n$ are nonmetrizable separable compact lines and $X,Y$ are separable Banach spaces, then (1) the space $C(L_1\times \dots \times L_k, X)$ is not isomorphic to any subspace of $C(K_1\times \dots \times K_n,Y)$ whenever $k \gt n$, (2) there is no continuous linear surjection from $C(L_1\times \dots \times L_k, X)$ onto $C(K_1\times \dots \times K_n,Y)$ whenever $k \lt n$.