JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Higher projective tensor products of $c_0$

Tom 267 / 2022

Ryan M. Causey, Stephen J. Dilworth Studia Mathematica 267 (2022), 59-107 MSC: Primary 46B03; Secondary 46B28. DOI: 10.4064/sm210711-3-1 Opublikowany online: 26 May 2022

Streszczenie

Let $m,n$ be positive integers with $m \lt n$. Under certain assumptions on the Banach space $X$, we prove that the $n$-fold projective tensor product of $X$, $\widehat {\otimes }{}^n_\pi X$, is not isomorphic to any subspace of any quotient of the $m$-fold projective tensor product, $\widehat {\otimes }{}_\pi ^m X$. In particular, we prove that $\widehat {\otimes }{}^n_\pi c_0$ is not isomorphic to any subspace of any quotient of $\widehat {\otimes }{}_\pi ^m c_0$. This answers a question from [R. M. Causey et al., Proc. Amer. Math. Soc. 148 (2020)].

Autorzy

  • Ryan M. Causey
    e-mail
  • Stephen J. DilworthDepartment of Mathematics
    University of South Carolina
    Columbia, SC 29208, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek