JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Diversity-normed spaces and diversity embeddings

Tom 267 / 2022

Pouya Haghmaram, Shohreh Golpaigani Fard, Kourosh Nourouzi Studia Mathematica 267 (2022), 19-35 MSC: Primary 46B04; Secondary 46B85, 30L05. DOI: 10.4064/sm210629-7-1 Opublikowany online: 10 June 2022

Streszczenie

The purpose of this paper is to extend some known metric embedding results to the setting of diversities introduced in [D. Bryant, P. F. Tupper, Adv. Math. 231 (2012), 3172–3198]. We first introduce diversity-normed spaces as a generalization of normed spaces and investigate their relationships with diversities. In particular, we introduce $ L_p $-diversity-normed spaces $ (1\leq p \leq \infty )$ which can be simultaneously considered as ($L_p$-)diversities. Then, for any $p$ $ (1 \leq p \leq \infty ) $, we investigate the possibility of embedding finite diversities and ultradiversities into $L_p$-diversities $ \ell _p^d $, for some positive integer $ d $, with some distortion. We present results analogous to the Bourgain theorem in the setting of both diversities and ultradiversities. We show that every diversity on $n$ points embeds in the diversities: (i) $\ell _p^{\mathcal {O}( \log n)}$ $(1\leq p \leq 2)$ with distortion $ \mathcal {O}(n \log ^{{(1+p)}/{p}}n) $; (ii) $\ell _p^{\mathcal {O}(\log ^{2}n)}$ $(2 \lt p \lt \infty )$ with distortion $\mathcal {O}(n \log ^{ {(2+p)}/{p}}n)$; (iii) $\ell _\infty ^{\mathcal {O}(\log ^2n)}$ with distortion $\mathcal {O}(n\log n)$. In addition, each ultradiversity embeds in the diversity $\ell _p^{\mathcal {O}( \log n)}$ $(1 \leq p \lt \infty )$ with distortion $ \mathcal {O}(\log ^{ {1}/{p}}n) $ as well as in $\ell _\infty ^{\mathcal {O}( \log n)}$ with constant distortion.

Autorzy

  • Pouya HaghmaramFaculty of Mathematics
    K. N. Toosi University of Technology
    Tehran, Iran
    e-mail
  • Shohreh Golpaigani FardFaculty of Mathematics
    K. N. Toosi University of Technology
    Tehran, Iran
    e-mail
  • Kourosh NourouziFaculty of Mathematics
    K. N. Toosi University of Technology
    Tehran, Iran
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek