JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the Cauchy dual operator and duality for Banach spaces of analytic functions

Tom 271 / 2023

Paweł Pietrzycki Studia Mathematica 271 (2023), 121-150 MSC: Primary 47B38; Secondary 47B32, 47B33. DOI: 10.4064/sm210907-19-9 Opublikowany online: 15 June 2023

Streszczenie

Two related types of duality are investigated. The first is the duality for left-invertible operators and the second is the duality for Banach spaces of vector-valued analytic functions. We will examine a pair ($\mathcal B,\varPsi)$ consisting of a reflexive Banach space $\mathcal B$ of vector-valued analytic functions on an open set $\varOmega \subset \mathbb C$ on which a left-invertible multiplication operator acts and an operator-valued holomorphic function $\varPsi $ on an open set $\varOmega ^\prime \subset \mathbb C$. We prove that there exists a dual pair ($\mathcal B^\prime ,\varPsi ^\prime )$ such that the spaces $\mathcal B^\prime $ and $\mathcal B^*$ are isometrically isomorphic while the multiplication operator on $\mathcal B^\prime $ is isometrically equivalent to the adjoint of the left inverse of the multiplication operator on $\mathcal B$. In addition we show that $\varPsi $ and $\varPsi ^\prime $ are connected through the relation \[\langle (\varPsi^\prime ( \bar z e_1) (\lambda ),e_2\rangle = \langle e_1,(\varPsi ( \bar \lambda ) e_2)(z)\rangle\] for all $e_1,e_2\in E$, $z\in \varOmega $, $\lambda \in \varOmega ^\prime $, where $E$ is a Hilbert space.

If a left-invertible operator $T\in \boldsymbol B(\mathcal H)$ satisfies certain conditions, then both $T$ and the Cauchy dual operator $T^\prime $ can be modelled as the multiplication operator on reproducing kernel Hilbert spaces of vector-valued analytic functions $\mathscr H$ and $\mathscr H^\prime $, respectively. We prove that the Hilbert space of the dual pair of $(\mathscr H,\varPsi )$ coincides with $\mathscr H^\prime $, where $\varPsi $ is a certain operator-valued holomorphic function. Moreover, we characterize when the duality between $\mathscr H$ and $\mathscr H^\prime $ obtained by identifying them with $\mathcal H$ is the same as the duality obtained from the Cauchy pairing.

Autorzy

  • Paweł PietrzyckiWydział Matematyki i Informatyki
    Uniwersytet Jagielloński
    30-348 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek