Products of synchronous games
L. Mančinska, V. I. Paulsen, I. G. Todorov, A. Winter
Studia Mathematica 272 (2023), 299-317
MSC: Primary 81P45; Secondary 46L89, 91A12.
DOI: 10.4064/sm221201-19-4
Opublikowany online: 10 August 2023
Streszczenie
We show that the -algebra of the product of two synchronous games is the tensor product of the corresponding ^*-algebras. We prove that the product game has a perfect C^*-strategy if and only if each of the individual games does, and that in this case the C^*-algebra of the product game is ^*-isomorphic to the maximal C^*-tensor product of the individual C^*-algebras. We provide examples of synchronous games whose synchronous values are strictly supermultiplicative.
Autorzy
- L. MančinskaQMATH
Department of Mathematical Sciences
University of Copenhagen
København, Denmark
e-mail
- V. I. PaulsenInstitute for Quantum Computing
and
Department of Pure Mathematics
University of Waterloo
Waterloo, ON, Canada
e-mail
- I. G. TodorovSchool of Mathematical Sciences
University of Delaware
Newark, DE 19716, USA
e-mail
- A. WinterICREA and Grup d’Informació Quàntica
Departament de Física
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona), Spain
e-mail