JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Calderón–Zygmund theory with noncommuting kernels via $\mathrm H_1^c$

Tom 277 / 2024

Antonio Ismael Cano-Mármol, Éric Ricard Studia Mathematica 277 (2024), 65-97 MSC: Primary 42B20; Secondary 42B35, 46L51, 46L52 DOI: 10.4064/sm230908-9-2 Opublikowany online: 12 June 2024

Streszczenie

We study an alternative definition of the $\mathrm {H}_1$-space associated to a semicommutative von Neumann algebra $L_\infty (\mathbb {R}) \mathbin {\overline {\otimes }} \mathcal {M}$, first studied by Mei. We identify a “new” description for atoms in $\mathrm {H}_1$. We then explain how they can be used to study $\mathrm {H}_1^c$-$L_1$ endpoint estimates for Calderón–Zygmund operators with noncommuting kernels.

Autorzy

  • Antonio Ismael Cano-MármolDepartment of Mathematics
    Baylor University
    Waco, TX 76798, USA
    e-mail
  • Éric RicardLaboratoire de Mathématiques Nicolas Oresme
    UNICAEN, CRNS
    1400 Caen, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek