JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Tracial states and $\mathbb G$-invariant states of discrete quantum groups

Tom 279 / 2024

Benjamin Anderson-Sackaney Studia Mathematica 279 (2024), 71-96 MSC: Primary 46L67; Secondary 46L30, 46L55, 43A10 DOI: 10.4064/sm230509-9-9 Opublikowany online: 13 November 2024

Streszczenie

We investigate the tracial states and $\mathbb G$-invariant states on the reduced $C^*$-algebra $C_r(\widehat {\mathbb G})$ of a discrete quantum group $\mathbb G$. Here, we denote by $\widehat {\mathbb G}$ the dual compact quantum group. Our main result is that a state on $C_r(\widehat {\mathbb G})$ is tracial if and only if it is $\mathbb G$-invariant. This generalizes a fact known for unimodular discrete quantum groups and builds upon the work of Kalantar, Kasprzak, Skalski, and Vergnioux. As one consequence of this, we find that $C_r(\widehat {\mathbb G})$ is nuclear and admits a tracial state if and only if $\mathbb G$ is amenable. This resolves an open problem due to C.-K. Ng and Viselter, and Crann, in the discrete case. As another consequence, we prove that tracial states on $C_r(\widehat {\mathbb G})$ “concentrate” on $\widehat {\mathbb G}_F$, where $\mathbb G_F$ is the cokernel of the Furstenberg boundary. Furthermore, under certain assumptions, we characterize the existence of traces on $C_r(\widehat {\mathbb G})$ in terms of whether or not $\widehat {\mathbb G}_F$ is Kac type. We also characterize the uniqueness of (idempotent) traces in terms of whether or not $\widehat {\mathbb G}_F$ is equal to the canonical Kac quotient of $\widehat {\mathbb G}$. These results rely on the following, of which we give proofs: Sołtan’s canonical Kac quotient construction, whether it is applied to the universal or the reduced CQG $C^*$-algebra of $\widehat {\mathbb G}$ (when the latter admits a trace), yields the maximal Kac type closed quantum subgroup of $\widehat {\mathbb G}$.

Autorzy

  • Benjamin Anderson-SackaneyDepartment of Mathematics and Statistics
    College of Arts and Science
    University of Saskatchewan
    Saskatoon, SK S7N 5A2, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek