JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On the closedness of the sum of marginal subspaces on $[a,b)$

Tom 280 / 2025

Ivan Feshchenko Studia Mathematica 280 (2025), 103-119 MSC: Primary 46E30; Secondary 46N30, 47B37 DOI: 10.4064/sm210302-14-12 Opublikowany online: 31 January 2025

Streszczenie

Let $(\Omega ,\mathcal {F},\mu )$ be a probability space and $p\in [1,+\infty )$. For every sub-$\sigma $-algebra $\mathcal {A}$ of $\mathcal {F}$ we define the marginal subspace of $L^p(\Omega ,\mathcal {F},\mu )$ corresponding to $\mathcal {A}$, $L^p(\mathcal {A})$, to consist of the equivalence classes of $\mathcal {A}$-measurable $p$-integrable random variables; it is a closed subspace in $L^p(\Omega ,\mathcal {F},\mu )$.

Let $\Omega =[a,b)$, where $-\infty \lt a \lt b\le +\infty $. Denote by $\mathcal {B}([a,b))$ the Borel $\sigma $-algebra on $[a,b)$. Let $\mu $ be a probability measure on $\mathcal {B}([a,b))$ and $p\in [1,+\infty )$. For a sequence of points $\pi =\{a_1,a_2,\ldots \}$, where $a \lt a_1 \lt a_2 \lt \cdots $ and $a_k\to b$ as $k\to \infty $, define a partition of $[a,b)$ by ${\rm part}(\pi )=\{[a,a_1),[a_1,a_2),\ldots \}$. Let $\sigma a(\pi )$ be the $\sigma $-algebra generated by ${\rm part}(\pi )$. The marginal subspace $L^p(\sigma a(\pi ))$ of $L^p(\mathcal {B}([a,b)))$ consists of (the equivalence classes of) $p$-integrable random variables which are constant on each element of ${\rm part}(\pi )$. Let $\pi _1,\ldots ,\pi _n$ be sequences of points of $[a,b)$. We study the following question: when is $L^p(\sigma a(\pi _1))+\cdots +L^p(\sigma a(\pi _n))$ closed in $L^p(\mathcal {B}([a,b)))$? We establish a relation between closedness of such sums and “fast decreasing” of tails of the measure $\mu $. We also outline an application of our result to the $L^2$-version of additive modeling.

Autorzy

  • Ivan FeshchenkoDepartment of Functional Analysis
    Institute of Mathematics
    National Academy of Sciences of Ukraine
    01024 Kyiv, Ukraine
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek