JEDNOSTKA NAUKOWA KATEGORII A+

Uniqueness of Ciesielski series with a subsequence of partial sums converging to a bounded function

Gegham Gevorkyan, Karen Keryan Studia Mathematica MSC: Primary 42C25; Secondary 42C10, 26A39 DOI: 10.4064/sm230713-27-1 Opublikowany online: 24 March 2025

Streszczenie

Some uniqueness theorems for series with respect to a Ciesielski system are proved. In particular, if the partial sums $S_{n_i}(x)=\sum_{n=-k+2}^{n_i}a_nf_n(x)$ of a Ciesielski series $\sum _{n=-k+2}^{\infty }a_nf_n(x)$ converge in measure to a bounded integrable function $f$ and $\sup_i|S_{n_i}(x)| \lt \infty $ when $x\notin B$, where $B$ is some countable set, with $a_n=o(\sqrt{n})$ and $\sup_i n_{i+1}/n_{i} \lt \infty $, then this series is the Fourier–Ciesielski series of $f$.

Autorzy

  • Gegham GevorkyanYerevan State University
    0025 Yerevan, Armenia
    e-mail
  • Karen KeryanYerevan State University
    0025 Yerevan, Armenia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek