The Bohr compactification, modulo a metrizable subgroup
Volume 143 / 1993
Abstract
The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩ G) is compact in G if and only if {aN:a ∈ A} is compact in bG/N. Examples are given to show: (a) the asserted equivalence can fail in the absence of the metrizability hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two topological group topologies U and T, with U totally bounded, T locally compact,U ⊆ T, with U and T sharing the same compact sets, and such that nevertheless U is not the topology inherited from the Bohr compactification of ⟨ G, T⟩. There are applications to topological groups of the form kG for G a totally bounded Abelian group.