Sur l’invariance de la dimension infinie forte par t-équivalence
Volume 160 / 1999
Fundamenta Mathematicae 160 (1999), 95-100
DOI: 10.4064/fm-160-1-95-100
Abstract
Let X and Y be metric compacta such that there exists a continuous open surjection from $C_p(Y)$ onto $C_p(X)$. We prove that if there exists an integer k such that $X^k$ is strongly infinite-dimensional, then there exists an integer p such that $Y^p$ is strongly infinite-dimensional.