A+ CATEGORY SCIENTIFIC UNIT

Selivanovski hard sets are hard

Volume 228 / 2015

Janusz Pawlikowski Fundamenta Mathematicae 228 (2015), 17-25 MSC: Primary 03E15; Secondary 54H05. DOI: 10.4064/fm228-1-2

Abstract

Let $H\subseteq Z\subseteq 2^{\omega }$. For $n\ge 2$, we prove that if Selivanovski measurable functions from $2^{\omega }$ to $Z$ give as preimages of $H$ all $\boldsymbol {\Sigma }_{n}^{1}$ subsets of $2^{\omega }$, then so do continuous injections.

Authors

  • Janusz PawlikowskiDepartment of Mathematics
    University of Wrocław
    Pl. Grunwaldzki 2/4
    50-384 Wrocław, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image