A+ CATEGORY SCIENTIFIC UNIT

Sur la nature des fonctions à carré sommable et des ensembles mesurables

Volume 4 / 1923

A. Besikovitch Fundamenta Mathematicae 4 (1923), 172-195 DOI: 10.4064/fm-4-1-172-195

Abstract

Théorème: Quelle que soit une fonction f(x) à carré sommable qu'on suppose définie aux points de l'intervalle (0,1) et nulle ailleurs, l'intégrale q(x) = ∫_0^1 (f(x+α)-f(x-α))/α dα considérée comme lim_{ϵ=0}∫_{ϵ}^1, est finie presque partout dans (0,1) et représente une fonction de x à carré sommable. Le but de cette note est de trouver une limite supérieure pour l'intégrale ∫_0^1[q(x)]^2dx, et de donner une démonstration du théoreme cité, en se servant d'une méthode des variables réelles qui permet de voir quelles sont les propriétés des fonctions et des ensembles desquelles résulte le théorème en question.

Authors

  • A. Besikovitch

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image