JEDNOSTKA NAUKOWA KATEGORII A+

Selecting basic sequences in $\varphi $-stable Banach spaces

Tom 159 / 2003

Tadeusz Figiel, Ryszard Frankiewicz, Ryszard A. Komorowski, Czesław Ryll-Nardzewski Studia Mathematica 159 (2003), 499-515 MSC: 46B15, 46B20. DOI: 10.4064/sm159-3-10

Streszczenie

In this paper we make use of a new concept of $\varphi $-stability for Banach spaces, where $\varphi $ is a function. If a Banach space $X$ and the function $\varphi $ satisfy some natural conditions, then $X$ is saturated with subspaces that are $\varphi $-stable (cf. Lemma 2.1 and Corollary 7.8). In a $\varphi $-stable Banach space one can easily construct basic sequences which have a property $P(\varphi )$ defined in terms of $\varphi $ (cf. Theorem 4.5).

This leads us, for appropriate functions $\varphi $, to new results on the existence of unconditional basic sequences with some special properties as well as new proofs of some known results. In particular, we get a new proof of the Gowers dichotomy theorem which produces the best unconditionality constant (also in the complex case).

Autorzy

  • Tadeusz FigielInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Ryszard FrankiewiczInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • Ryszard A. KomorowskiInstitute of Mathematics
    Wrocław University of Technology
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail
  • Czesław Ryll-NardzewskiInstitute of Mathematics
    Wrocław University of Technology
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek